植物营养和施肥学科是怎样建立的?
发布时间:2024-11-11 17:42:46来源:未知
19世纪初,虽然泰伊尔的腐殖质营养学说占主导地位,但当时的许多科学家乃至哲学家仍尝试通过其他途径来揭开植物究竟需要什么这个谜。瑞典哲学家和历史学家塞内比埃指出,范埃尔蒙的试验中,柳树重量增加的原因是由于空气,而不仅仅是水。索絮尔经过深入研究发现,植物通过呼吸作用吸收氧气,放出二氧化碳,但在光照条件下,植物可吸收二氧化碳而同时放出氧气;如果将植物保持在无二7a64e58685e5aeb931333431356130氧化碳的环境中,它们会死亡。同时指出,土壤供给植物的仅仅是一小部分养料,而且包括灰分和氮素;还认为植物根系的作用并非是一种过滤器,而是一种选择性的渗透膜,水分的进入快于盐类。法国化学家布森高通过各种田间小区试验和化学分析,计算了从雨水、土壤和空气中得到的植物营养元素的数量,分析了作物各生长阶段的元素组成,制成了养分平衡表。同时发现,豆科作物能在土壤中积累氮素,并指出这些氮素来自空气,进而提出了氮素营养学说;还认为植物固定的碳来自空气,而与有机肥料中的碳无关。上述一系列试验结果和结论,不仅有力地批驳了腐殖质营养学说,而且为植物营养和施肥学科的建立奠定了良好的基础。
1840年,德国科学家李比希在总结前人研究成果的基础上撰写出版了《化学在农业和植物生理学上的应用》一书,批判了腐殖质营养学说,提出了植物的矿质营养学说,其主要观点有:植物不是以腐殖质为营养,而是以矿物质为营养;进入植物体内的矿物质不是偶然的,而是为植物生长和形成产量所必需的;植物需要10种营养元素,除了碳、氢和氧以外,其他营养元素是植物从土壤中以盐的形态吸收的;植物种类不同,对营养的需要量也不同,需要量的多少可通过测定营养正常的植物的组成来确定;对于植物的正常生长来说,多数土壤所提供的养料是不足的,通过施肥供给养料可以克服土壤养分的缺乏;有机物质(腐殖质)的作用在于改良土壤,并通过分解提供矿质营养和二氧化碳。李比希还提出了“归还学说”和“最小养分律”。“归还学说”认为,由于不断地栽培和收获作物,携走了作物从土壤中摄取的矿质营养,土壤养分将越来越少,如果不把这些营养归还给土壤,土壤将变得十分贫瘠。因此必须把作物收获所带走的养料全部归还给土壤。这一论断为化肥工业的兴起和化学肥料的施用奠定了理论基础。“最小养分律”则认为,作物产量的高低决定于最小(最缺乏)的营养因子,如果这一因子得不到满足,即使其他因子充足,作物产量也不可能提高。
1858年,克诺普和萨克斯根据矿质营养学说,在用矿质盐类制成的人工营养介质上栽培植物完全成熟,证明了矿质营养学说的成功。李比希的矿质营养学说和布森高的氮素营养学说的创立,标志植物营养与施肥学科的真正建立,是学科发展史上的一大里程碑。
19世纪60年代,萨克斯和克诺普提出了溶液培养的研究方法,使植物必需的10种营养元素得以确定。同期,俄国化学家门捷列夫通过田间试验,认为要根据土壤肥力合理分配和施用肥料。
20世纪初,高纯度化学药品被用以配制培养液,到1954年氯被确定为植物必需的微量营养元素为止,公认的植物必需营养元素已增至16种,即:碳、氢、氧、氮、磷、钾、钙、镁、硫、铁、锰、铜、锌、硼、钼、氯(近年又增加了镍)。与此同时,各种植物必需营养元素对植物的营养作用和生理功能也进一步明确;植物必需微量营养元素的发现,还为许多早期施肥失败现象和不知名的植物病症找到了原因。20世纪20年代,苏联植物生理学家季米里亚捷夫设计出专用于研究植物营养与施肥的植物营养室,并通过研究得出结论认为:肥料是植物营养的源泉,合理施肥能改善植物体内的代谢活动和对外界不良环境的抗性。同期,苏联农业化学家普里亚尼什尼柯夫以植物与其生活的外界环境条件相统一为理论基础,阐述了土壤、肥料和植物三者之间的相互关系,并强调指出,通过合理施肥能调节营养物质在植物体内和土壤中的变化和作用,改善植物生长发育的内在和外界条件,达到提高作物产量和品质的目的。这一论断在科学技术发达的今天,对植物营养与施肥学科的发展,尤其是对施肥技术的发展以及植物生长因子综合理论的实践仍具有广泛的现实意义。
李比希的矿质营养学说为化肥工业的兴起奠定了理论基础。1843年,第一种人造肥料——过磷酸钙在英国投产,在此后的约一个半世纪中,全世界已生产和施用了数十种含有单一的植物必需营养元素的化肥和含有两种或两种以上植物必需营养元素的复合肥料。尤其是第一次世界大战以后,化肥的生产量和施用量猛增,作物的产量也大幅度上升。据FAO(1999)报道,1995年以来全世界化肥的年总施用量已超过1.37亿t,其中氮肥(N)8200余万t,磷肥(P2O5)3300万t,钾肥(K2O)2200万t。
随着植物生理学、生物化学、生物物理学、有机高分子化学、遗传学、分子生物学等学科与植物营养学的相互渗透,电子显微镜、电子探针、质谱、色谱(尤其是高效液相色谱)、核磁共振、同位素示踪、地理信息系统、电子计算机等各项技术在植物营养与施肥学科中的应用,植物营养与施肥学科的内容日趋广泛,研究更为深入,并产生了一系列新兴的学科分支,如植物营养遗传、根际微环境、植物有机营养等。植物生长因子综合理论(包括植物营养与施肥理论)的运用,可能在近期内实现一场新的农业革命;遗传工程(包括植物营养基因工程)在农业上的应用将是农业上更大的变革。农业生态系统和农业生态平衡概念的明确和观点的树立,进一步推动植物营养与施肥学科在综合性和宏观性方面(如养分的循环与平衡、施肥的环境效应、土壤资源的维护和改良等)的研究,将为农业的可持续发展提供可靠的保证。同时,也将使植物营养与施肥学科的理论体系日趋完善,并发展成为一门具有现代科技特征的科学。